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ABSTRACT  
Automatic target recognition (ATR), both for optical and E.M. images, has been a subject of great interest 
since the last 20 years. The deep learning breakthrough allowed researchers to improve feature extractors 
by increasing their complexity and since then, traditional classifiers have been outperformed by those based 
on deep neural network (DNN). So far, DNN-based detectors obtained nearly perfect results on closed sets, 
namely static datasets, which contain only known classes. Nevertheless, they have a significant decrease in 
performance when employed in dynamic environment. This problem, often referred to as open set 
recognition, can be addressed by developing completely new classifiers or by using techniques that exploit a 
background class. However, few works analyse the possibility of using post-processing methods to adapt a 
closed set classifier in order to serve as an unknown detector. In this paper, the YOLO model is trained and 
tested on a dataset of SAR images generated from the MSTAR collection by using targets that are both 
known and unknown to the network. Two new post-processing methods have been developed making the 
YOLO detector able to implement the identification of unknown targets. 

1.0 INTRODUCTION 

During the last decades, radar systems with imaging capabilities have been employed in a wide variety of 
applications, therefore creating an ever increasing amount of data. Automatic target recognition (ATR) for 
SAR or ISAR images has consequently gained a lot of interest among researchers. Usually, the ATR 
problem is divided in two phases, the pre-screening, or definition of the region of interest (ROI), for each 
target and the classification, which is performed by comparing the ROI with a pre-trained model of the 
proposed class. Recent works have been using sliding-window detectors with Convolutional Neural Network 
(CNN) to identify both the ROI and the target class. However, this approach has poor computational 
efficiency and therefore high inference time. A more efficient solution is represented by the YOLO (You 
Only Look Once) algorithm [1]. The performance of the YOLO algorithm for known targets have been 
largely verified on optical images. Due to the success obtained by the YOLO algorithm in the optical 
domain, recent works started to study its application to radar images [2], [3], [4], thus it is a current and 
novel area of research in the radar domain. In this paper, the smaller third version of the You Only Look 
Once (YOLOv3-Tiny) [5] deep neural network, typically trained with optical images, is trained on SAR 
images from the MSTAR dataset. The YOLO classifier is a fully convolutional neural network (FCNN) and 
is therefore able to localize and classify multiple targets at once. Furthermore, this network uses independent 
logistic classifiers to obtain predictions for each class, making it best suited for multilabel datasets. Another 
problem of ATR is the dynamism of the real world as opposed to the fixed conditions of the training 
environment. Indeed, most classifiers are developed using the closed set assumption, which implies that the 
classes used in the training phase are the only ones that the system will encounter during its operational 
phase. This leads to classifiers that are limited by their training set. On the other hand, open set classification 

mailto:giulio.meucci@cnit.it


Radar Target Recognition Based on Open Set YOLO      

MSS-096 - 2 STO-MP-SET-311 

NATO UNCLASSIFIED 
RELEASABLE TO AUS, CHE, JPN, SWE 

NATO UNCLASSIFIED 
RELEASABLE TO AUS, CHE, JPN, SWE 

algorithms can label previously unseen targets as unknown and, therefore, better perform when employed in 
real environments. The identification of an unknown target is often accomplished by using either a 
confidence threshold on the proposals or a direct comparison between the features of the new target and 
those of the known classes. The YOLO algorithm has been developed with the closed set assumption. And, 
to the best of our knowledge, only a few papers tested YOLO in an open set environment using optical 
images [6] and none tested it on radar ones. Thus, the application of YOLO on an open set radar 
environment is a novelty of this work. In particular, as demonstrated in our work, this can be done by adding 
post-processing steps and a hierarchical classification method. In this direction, the developed strategy 
consists of two methods to detect unknowns from the output of the YOLO closed set classification 
algorithm. The first newly introduced method exploits the mutually exclusive labels of the dataset and the 
independent classifiers, introduced in the third version of the YOLO algorithm, to identify as unknown the 
targets for which the network shows indecision. The second one applies an overlay of new labels to 
categorize the known targets in the training set instead of classifying them. If correctly defined, the new 
categories have a better generalization and are therefore more suited to include the unknown targets. 
Furthermore, since the two layers of labels represent different feature of the targets we can assign different 
confidence threshold to their predictions, obtaining therefore another degree of freedom in the design of the 
open set detector. After a brief introduction to the main features of the YOLO architecture we will present 
the two methods for the identification of unknown targets. The original dataset and the steps taken to obtain 
the final one will be illustrated in Section 4.1. Section 4.2 shows the metrics used to evaluate the 
performance and in Section 4.3 the obtained results will be presented and compared. 

2.0 YOLO-BASED CLASSIFIERS 

YOLO [1], [5], [7] is a one-stage detector for performing object detection in real time on images, videos or 
live feed. Its network is made of several convolutional layers which extract the features and assign the labels 
for each target during a single elaboration on the whole image. This is accomplished by dividing the input 
image in a grid of cells, each cell is then convolved with the filters of the layers to obtain a feature map with 
reduced spatial resolution but increased semantic meaning. In the tiny version of the algorithm, the one used 
in the following work, this process is repeated at two different scales to increase the performance of the 
detector for small sized objects and improve the quality of the information contained in the feature map [5]. 
Indeed, for each scale the map is concatenated with the output of a previous layer in order to fuse the raw 
information from the first layers with the more meaningful output of the last ones. Each cell will then 
evaluate the probability of an object being in it, measured with the objectness score os, and the conditional 
probabilities for all the known classes. The output tensor has the form NxNx((C+4+1)xB) where NxN are 
the dimensions of the cell grid, C is the number of the known classes and 4+1 are the prediction of the 
bounding box centre, width and height plus the previously mentioned objectness score, os. The last term, B, 
is the number of bounding box prior assigned to the detectors used at each scale. The bounding box prior are 
predefined width and height that are computed applying the k-means method to the bounding boxes of the 
training set. This information are then used by the network as a starting point for the predicted bounding box. 
The conditional probabilities of belonging to each class are simultaneously predicted through logistic 
regression and are considered mutually independent. This mechanism was introduced in the third version of 
the algorithm to improve the network performance in complex dataset with many overlapping labels but, 
under some assumption, it can help the open set recognition task on simpler domains. 

3.0 OPEN SET YOLO ‒ PROPOSED METHODS 

3.1 First Method (Indecision Based Classification) 
Typically, a closed set classifier in an open set environment will incorrectly assign the unknown targets to 
known classes with a high confidence and therefore any methods involving a threshold would fail in 
detecting this event. If we instead assume that the known labels are mutually exclusive, we can repurpose the 
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logistic classifiers of the YOLO model to act as an unknown detector. For example, if our classifier is trained 
to recognize the models of certain car brands, we are dealing with labels that cannot coexist on the same 
target and are therefore mutually exclusive. In this scenario, a target labelled as two different models raises 
the question of whether the network is unable to correctly classify a known class or has been reasonably 
confused by a target that has never seen before. However, if the classifier performs well on known classes it 
is unlikely that the network is incorrectly assigning a known label, although still possible. The detected target 
is therefore probably unknown and can be labelled accordingly. 

3.2 Second Method (Hierarchical Classification) 
Another approach to the open set classification problem consists in identifying as unknown all the targets 
that didn’t receive a proposal. Even though it may seem the most logical solution to our problem, this idea 
shifts the complexity of the task from the classification to the detection of the targets. Indeed, since the target 
is not receiving any proposal, we can’t directly rely on the network for the detection of the unknown. A 
typical solution uses the background class and identifies as unknown all the portions of the input image that 
have received neither the proposal for the class nor for the background. However, this approach suffers from 
the high generalization needed for the background class which should ideally include all the non-relevant 
targets but not the ones that we are trying to identify. Furthermore, as previously stated, closed set classifiers 
are more likely to assign a known label to the unknown target, especially if it is similar to a known class. 

Our approach is closer to the everyday experience. Reusing the previous example, if we see a new model of 
a car brand, we may not be able to immediately tell the specific name of that car, but we wouldn’t label it as 
“unknown”. Instead, we may be able to recognize its brand or at least that it is a car. Organizing the 
information in a hierarchical structure gives us the ability to categorize new objects without knowing them 
specifically. Following this idea, we tried to equip the YOLO network with a similar mechanism and added a 
new layer of labels on top of the original ones in order to create a more abstract representation. The 
information associated with these new classes are more general and therefore also the generalization of their 
model should improve, making them more likely to be assigned to an unknown target. 

Furthermore, with the introduction of this new layer of generic labels we could require their presence before 
assigning the specific ones. In our example scenario, if a target is labelled with a specific model name it can 
also be labelled with a more generic label representing its category, as can be the label “Vehicle”. If we 
require the proposals to contain both these labels we are using a contextual information to enforce the 
network predictions. The final procedure is represented in Figure 1. 

 

Figure 1: Flowchart of the proposed procedure for the identification unknown targets. 

The two presented methods are based on two distinct concepts, one being the absence of specific labels, the 
other the presence of multiple and mutually exclusive proposals, and therefore can be combined in a single 
process. Similarly, to the Non-Maximum Suppression (NMS) algorithm we scan the output of the network in 
search of overlapping predictions and, when found, an analysis on the predicted classes is performed using 
both the described methods. The final set of unknowns is then the aggregation of the subsets of targets 



Radar Target Recognition Based on Open Set YOLO      

MSS-096 - 4 STO-MP-SET-311 

NATO UNCLASSIFIED 
RELEASABLE TO AUS, CHE, JPN, SWE 

NATO UNCLASSIFIED 
RELEASABLE TO AUS, CHE, JPN, SWE 

identified by each method. Typically, the minimum confidence threshold for the YOLO predictions is set to 
0.25 for all the proposal but, exploiting the overlay of labels introduced for the second method, we can split 
the threshold and assign a minimum confidence for each layer. Using more than one level of labels led us to 
a trade off in the design of the open set classifier. The first set of thresholds that we defined requires a lower 
confidence score (0.1) for the more specific labels, in order to help the indecision-based classification 
method introduced, and a high confidence score (0.75) for the generic ones. The other set requires high 
confidence (0.75) for labels that represent highly specific features of the targets, as in the example of the car 
model mentioned before, and instead accepts less confidence (0.25) for the more generic labels of the new 
layer. A comparison between these two sets is presented in Section 5. 

4.0 EXPERIMENTAL SETUP 

4.1 Dataset 
The images used to train and test our open set classifier are generated from a subset of the Moving and 
Stationary Targets Acquisition and Recognition (MSTAR) dataset [8], published by the U.S. Air Force 
Research Laboratory (AFRL) and Defense Advanced Research Project Agency (DARPA). The SAR images, 
or chips, collected in the MSTAR represent various military vehicles at 3 different depression angles. We 
divided the dataset in 3 subsets: the training set which is used to fit the network to the known classes, the 
validation set which in our case is composed of images of only known classes that the network has never 
seen and the test set composed only by unknown targets. For the training and validation set we selected only 
the 2S1, BRDM2, BTR60, D7 and T62 as known classes, since those were the vehicles with more 
occurrence in the collection. We then divided each vehicles’ chips in two groups with proportion 20:1 in 
order to guarantee the separation between the training and validation set. Those two sets contain only known 
targets and were used to train the network and to verify the correct training. The test set instead contains only 
unknowns, namely the ZIL131 and the ZSU234 chips plus the Slicy target’s chips, a metal object designed to 
resemble the other vehicles of the collection and particularly useful to analyse the false alarm rate of the 
classifier. It is known in the literature [9] that, for SAR images, the portion of the image containing the 
shadow projected by the target bring as much information as the portion containing the targets itself. For this 
reason, we included the shadows while creating the bounding boxes and the associated labels as ground 
truths. For the second method, we added the new label “Vehicle” and assigned it to all the known targets 
alongside the specific label representing the model of the vehicle (i.e. 2S1, BRDM2, BTR60, D7 and T62 for 
the known classes and ZIL131 and ZSU234 for the unknown). Despite not being used by the network, we 
labelled the unknown targets with their specific label to keep track of the proposals for each one. After 
labelling the targets accordingly to the YOLO format, we resized the chips to 128x128 pixels and randomly 
applied data augmentation techniques such as flips, circular shift and reflections. We also added gaussian 
noise to the training set and compared the performance of the detector while varying the standard deviation. 
The final images of the dataset are generated as a 3x3 composition of MSTAR images and two-dimensional 
realization of noise with standard deviation equal to the original background of the surrounding chips. We 
applied this procedure in order to obtain a more realistic dataset with scenes containing a random number of 
targets in various positions instead of having them always at the centre of the image, as in the original 
MSTAR chips. Figure 2 is an example of the generated images. 
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Figure 2: Example image taken from the training set showing 3 x 3 composition generated using 
the MSTAR chips and the bidimensional noise realizations. 

4.2 Performance Metrics 
We measured the accuracy of the detector with the Intersection over Union (IoU) [10] metric, which is often 
used in object detection challenges since any algorithm that predicts bounding boxes can be evaluated using 
such metric. We can obtain the IoU score comparing the ground truth box and the network’s prediction with: 

 

Another widely used metrics in object detection is the mean Average Precision (mAP) [11] and is defined as 
the average over all the classes of the Average Precision (AP). In turn, the AP is the area under the precision-
recall curve, where precision and recall are respectively defined as: 

 

Where we defined as TP the True Positive, as FP the False Positive and as FN the False Negative. The mAP 
is particularly suited to measure the performance of a classification algorithm since it can be combined with 
the IoU to obtain a single value which accounts for the accuracy of both the detector and the classifier.  
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5.0 RESULTS 

5.1 Description of the Training Parameters 
In this Section after a description of the training parameters, the obtained results will be presented. A 
common problem of training deep neural network on small datasets is overfitting. To address this, we used 
transfer learning and started the re-training of the whole network from the weights of the YOLOv3 trained 
on the COCO dataset, available on the author site [12]. With few preliminary experiments, involving only 
the known classes, we tuned the hyperparameters of the network in order to maximize the mAP score. 
Following [13] we also reduced the batch size from 64 to 16 and set the batch subdivision to 4 in order to 
improve the model’s generalization and reduce the computational requirements for the training phase. We 
used the step decay schedule with factor 1/10 to update the learning rate at iterations 50000 and 80000. The 
latter didn’t trigger any change in the loss function, so we stopped the training at iteration 100000.  

5.2 Results Without Noise Injection 
In the following subsection we present the results obtained on the dataset generated without adding Gaussian 
noise in the training set for both the confidence thresholds set mentioned in Section 3. The first set requires a 
minimum confidence score equal to 0.75 for the “Vehicle” class and 0.1 for the other known classes. The 
low confidence for the specific labels of the known classes increases the probability of having more than one 
label for each target and therefore increases the probability of detecting the unknown with the indecision-
based method. The second set instead requires 0.25 for the “Vehicle” class and 0.75 for the known ones. This 
setup better support the second method since the high confidence required for the specific labels filters out 
some of the predictions, thus leaving the targets with the “Vehicle” label only. 

The results Obtained on the validation set for the two sets of thresholds are reported in Table 1 and in  
Table 2. The minimum required IoU score is set to 0.75.  

Table 1: Validation set ‒ first set of thresholds. 

 

Table 2: Validation set ‒ second set of thresholds. 
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Table 3 and Table 4 report instead the results obtained on the test set, containing the unknowns and the Slicy 
target, for the respective set of thresholds. The number of false alarms raised by the fake target (i.e. the Slicy) 
are not included in the total count of known and unknown declarations but are instead reported aside 
between brackets. Since this dataset contains only unknown targets whose bounding box prior are not known 
to the network, we lowered the IoU minimum score to 0.5. 

Table 3: Test set ‒ first set of thresholds. 

 

Table 4: Test set ‒ second set of thresholds. 

 

However, with a low confidence for the specific labels, as in the case of the first set of thresholds, the 
number of false alarms raised by the class Slicy would increases. To address this issue, we required the label 
“Vehicle” to be assigned along the specific one. Since the generic label “Vehicle” requires a high confidence 
to be assigned, we widely reduced the overall number of false targets detected without decreasing the 
performance on the other classes. 

5.3 Results with Noise Injection 
For the noise analysis we set the standard deviation to 5 and 10 but, to facilitate comparison, also the results 
obtained without noise addition will be reported. The corresponding SNR is evaluated on the whole dataset. 
At every increase of standard deviation, the dataset is generated again and the whole network is retrained. 
The test set is left unchanged to facilitate the comparison of the proposed methods. Table 5 and Table 6 
report, for the validation set and for each thresholds set described in the previous subsection: the overall 
number of targets, the mAP, the number of targets wrongly identified as unknown by each method and the 
number of missed targets (Miss). 

Instead, for the test set, Table 7 and Table 8 report: the number of unknown wrongly assigned to a known 
class (Known), the number of false alarm raised by the Slicy target (FA), the total number of unknown 
correctly identified by each method and the number of missed targets (Miss). 
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Table 5: Validation set ‒ first set of thresholds. 

 

Table 6: Validation set ‒ second set of thresholds. 

 

Table 7: Test set ‒ first set of thresholds. 

 

Table 8: Test set ‒ second set of thresholds. 

 

6.0 CONCLUSIONS 

The aim of this preliminary study was to identify new methods for adapting a closed set algorithm, the 
YOLO network, to act as an open set detector, able to recognize targets never seen before. Since the MSTAR 
dataset contains SAR images of similar military vehicles, we couldn’t directly rely on the network for the 
identification of unknown targets that, in most cases, were assigned to known classes. We then defined two 
post-processing methods that analyse the output of the YOLO classifier in search of contradictory labels or 
missing information. Despite being developed having in mind the MSTAR dataset, the proposed methods 
can be adapted to work in any dataset. Indeed, the hierarchical classification is nothing more than a 
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simplified representation of our way of organizing information. The indecision method instead is based on a 
stronger assumption which involves working with mutually exclusive labels. In the majority of applications 
this is not true but it could still be possible to identify a subset of known classes that cannot coexist together 
and we could then modify the method in order to work only on that particular subset. In Table 2, where we 
used the second set of thresholds of 0.75 and 0.25 for the “Vehicle” and the known classes respectively, we 
can notice a significant increase in the number of known target wrongly identified as unknown. However, 
only the number of missed targets decreased and therefore the introduced method improved the detection 
accuracy also for the known classes. This is due to the greater generalization obtained for the “Vehicle” class 
which, although less informative, has successfully located more targets than the specific classes. This 
behaviour can be helpful in scenarios where the system needs to detect every target as for autonomous 
driving or for military applications. The experiments performed on the test set show that both methods 
successfully identified a portion of the unknowns. However, the vast majority of the unknowns were 
misclassified as known targets and for the second set of thresholds of Table 4 a significant number of the 
Slicy targets are assigned to the “Vehicle” class. The addition of Gaussian noise to the training set slightly 
influenced the performance of the classifier on the validation set as showed in Table 5 and Table 6. 
Nevertheless, the results obtained on the test set significantly improved with respect to the ones showed in 
Table 3 and Table 4. Indeed, the number of unknown targets correctly identified increases with the standard 
deviation of the injected noise but, for the first set of thresholds, also the number of missed targets increases 
or, for the second set of thresholds, the number of false alarms increases. In conclusion, the first presented 
method along with the associated confidence thresholds proved its reliability in terms of false alarm rate but 
the identification of most of the unknowns failed. The hierarchical classification with the opposite set of 
thresholds showed instead a high false alarm rate, assigning the Slicy target to the “Vehicle” class 3 times 
out of 4. However, for STD equal to 10 in Table 8, 40% of unknown targets are correctly identified. This 
results can be used as a starting point for the development of an adaptive classifier able to recognize the 
limits of its knowledge and learn. 
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